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ARE ALL SIMPLE 4-POLYTOPES 
HAMILTONIAN? 

BY 

MOSHE ROSENFELD' 

ABSTRACT 

We construct an extensive family of non-Hamiltonian, 4-regular, 4-connected 
graphs and show that none of these graphs is the graph of a simple 4-polytope. 

1. Introduction 

A graph G is d-polytopal if it is isomorphic to the 1-skeleton of a d-polytope. 

A d-polytope is simple, if every vertex belongs to exactly d facets (d edges). The 

graph of a simple d-polytope is d-regular and d-connected. Many problems 

concerning d-polytopal graphs were formulated over 20 years ago. In spite of 

that, very little progress was made on most of these problems. In this paper, we 

try to shed more light on one of these problems: Barnette's conjecture. 

D. Barnette has conjectured that every simple 4-polytope is Hamiltonian (see 

Griinbaum [3], p. 1145). Since no characterization of 4-polytopal graphs is 

known, it seems that there are two possible alternatives to try to resolve 

Barnette's conjecture: 

(i) Construct families of simple 4-polytopes and check their Hamiltonicity. 

(ii) Construct 4-regular, 4-connected, non-Hamiltonian graphs, and check 

their polytopality. 

With luck, either (i) will produce a non-Hamiltonian simple 4-polytope, or (ii) 

will produce a polytopal graph. (At this point, the author wishes to express his 

doubts in the validity of Barnette's conjecture.) Due to the difficulties of 

checking the Hamiltonicity or polytopality of graphs, these seem like the devil's 

alternative, but they seem like the only alternatives available at this point. 

The first alternative was adopted in Rosenfeld and Barnette [7]. In this paper 

(with the later arrival of the Four Color Theorem), it was shown that all simple 
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4-prisms are Hamiltonian. V. Klee [4] proved that the duals of the cyclic 

4-polytopes C(n;4) are Hamiltonian. Griinbaum, Kleinschmidt and Rosenfeid 

(in preparation) extended Kiee's result to a large family of neighborly 4- 

polytopes. In this paper we present an attempt to use the second alternative. We 

construct an extensive family of 4-regular, 4-connected non-Hamiltonian graphs 

(these are all such graphs known to the author) and show that none of these 

graphs is polytopal. To prove this we use the existence of an infinite family of 

forbidden subgraphs in simple 4-polytopal graphs that we derive. As a byproduct 

of our attempt, we obtain a 4-regular, 4-connected, non-Hamiltonian graph with 

54 vertices. The smallest (and first) counter example to Nash-Williams' conjec- 

ture (that all 4-regular 4-connected graphs are Hamiltonian), the Meredith 

graph, has 70 vertices (Meredith [6]). 

2. Definitions and preliminaries 

We use the standard terminology and notation of graph theory (Bondy and 

Murty [1]) and convex polytopes (Grfinbaum [2]). If P is a simple 4-polytope, 

then its boundary complex, ~3(P), has the following properties: 

(a) The facets of P (the 3-faces) are simple 3-polytopes. 

(b) If k facets have a non-empty intersection, then the dimension of their 

intesection is 4 -  k. 

(c) Every (4-k) - face  of P is the intersection of exactly k facets. 
(d) If a k-face H meets a facet F, H ~  F, then F n H is a ( k -  1)-face. 

These are standard results; for details, see Griinbaum [2], ch. 3. It follows that if 

a 4-regular, 4-connected graph is 4-polytopal, it must have the following 

properties: 

(1) G contains a family of subgraphs {GI, '- ' ,  G,}, each a cubic 3-connected, 

planar graph. (We call these subgraphs the "facets" of G.) 
(2) Each vertex of G is contained in exactly 4 "facets" of G, and each edge of 

G is contained in exactly three "facets". 

(3) G, n Gj is either empty, or a two-face of G, and Gj, that is, an induced 

cycle in the graph G. 

(4) Any two-face of G, is the intersection of exactly two "facets". 

It should be noted that if G satisfies (1)-(4), it does not necessarily mean that G 

is 4-polytopal, but the converse is always true. 

We denote by N(g) the set of vertices adjacent to g in a graph G. Let G and 

H be two disjoint graphs. Let g E V(G) and h E V(H) be two vertices in these 

graphs. We further assume that both G and H are 4-regular, 4-connected 

graphs. Let 
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N(g)  = {gl, g2, g3, g4} and N(h)  = {h~, h2, h3, h4}. 

Let G1 = G \{g} t_J H\{h}  LI {(g, hi), (g2, h2), (g3, h3), (g4, h4)}. Obviously, G~ is a 

4-regular graph. It is easy to see that G~ is also 4-connected. We say that G~ is 
obtained from G by substituting the graph H\{h}  for g. 

3. 4-regular, 4-connected, non-Hamiltonian graphs 

In [6], Meredith constructed r-regular, r-connected non-Hamiltonian graphs. 

His construction was based on substituting complete bipartite ~graphs for the 

vertices of a multigralAh obtained by replacing some edges of the Peterson graph 

P by multiple edges. The Meredith graph thus obtained is a 4-regular, 

4-connected non-Hamiltonian graph with 70 vertices. We construct below a 

family of 4-regular, 4-connected non-Hamiltonian graphs that contain this graph. 

Let ~4 denote the set of all 4-regular, 4-connected graphs G, such that for 

each G there is at least one vertex g E V(G), with N(g)  = {gl, g2, g3, g4}, SO that 

V(G \{g}) cannot be covered by two disjoint paths with endpoints {g~, g2, g3, g4}. 

(For example, any 4-regular, 4-connected bipartite graph is in ~4.) In the sequel, 

whenever we use a member G of ~4, and a vertex g E V(G), we assume that g 

has the above mentioned property. 

LEMMA 1. Suppose that a subgraph K of a 4-regular, 4-connected graph H is 
isomorphic to G \{g} where G E Y(4. Let HI be obtained from H by contracting K 
to a single vertex. H is Hamiltonian if and only if H1 is. 

LEMMA 2. Let H and H~ be as in Lemma 1; H is 4-connected iff H1 is 4-edge 
connected. 

The proofs of these lemmas are essentially similar to the proofs of theorems 1 

and 3 in Meredith [6]; we omit the details. 

LEMMA 3. Let G be a 3-connected cubic graph. Let G* be the multi-graph 
obtained from G by replacing each edge e E F, where F is a given 1-factor of G, by 
a pair of parallel edges. Then G* is 4-edge connected. 

PROOF. Since G is cubic and 3-connected, it is 3-edge connected. Assume 

that the lemma is false, and let {el, e2, e3} C E(G*) be an edge cut set of G*. If 

e~ E F and e* (the edge parallel to e~) belongs to {el, e2, e3}, say e ~' = e2, then 

{et, e3} would be an edge cut set in G. If e* ~ {e2, e3}, then {e2, e3} would be an 

edge cut set in G. Since both contradict our assumption, we conclude that 

{el, e2, e3} CI F = O. That means that the edges e~, e2, e3 are in E(G) \F ,  and they 

separate G. Since G is cubic and 3-connected, the only way that G can be 
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separated by these edges is if the edges are pairwise disjoint, and G \{el, e2, e3} 

has exactly two components, G~ and G2 (Fig. 1). 

Since F is a 1-factor of G, F n G~ must be a 1-factor of G~. But G1 has exactly 

3 vertices of degree two and since all the other vertices have degree three, G1 has 

an odd number of vertices and therefore cannot have a 1-factor. This proves that 

G* is 4-edge connected. 

el 

e2  

e 3 

Fig. 1. 

THEOREM 1. Let G be a cubic, 3-connected, non-Hamiltonian graph. Let 

F C_ E(G) be a 1-factor of G. Let G* be the 4-regular multi-graph obtained by 
replacing each edge e ~ F by a pair of parallel edges. Let G be obtained from G* 
by substituting for each vertex g E V(G*) some graph H(g)\{h} where H(g)E 
~4. Then G is a 4-regular 4-connected non-Hamiltonian graph. 

PROOF. G is obviously 4-regular. By Lemma 3, G* is 4-edge connected. By 
Lemma 2, (~ is 4-connected. O is non-Hamiltonian by Lemma 1. 

We denote by ,/Ro the family of all 4-regular, 4-connected graphs (~ obtained 

by the above construction. Observe that the Meredith graph (Fig. 2) is obtained 

- m I r -  

Fig. 2. 
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by choosing the Peterson graph for G, the "obvious" 1-factor for F and 

substituting for each vertex of G* a copy of/(3.4. 

LEMMA 4. Let G be a 4-connected, 4-regular graph. Let el = (xl, x2) and 
e2 = (x3, x4) be two disjoint edges of G. Let G' be any 4-regular, 4-connected 
graph, G tq G' = ~ .  Let g E V(G)  be any vertex and let N(g) = {gl, g2, g3, g4}. 

Let 
H = (G \{e,, e2}) U (G'\{g}) U {(Xl, gl), (x2, g2), (x3, g3), (x4, g4)}. 

H is a 4-regular 4-connected graph. 

PROOF. Since G'  is 4-connected, G'\{g} is 3-connected. By Menger's 

theorem, G'\{g} has a pair of disjoint {gl, g3}-{g2, g4} paths. Without loss of 

generality, we may assume that one path, P1, has endpoints {gl, g2} and the other, 

P2, has endpoints {g3, g4}. Obviously, H is 4-regular. To show that H is 

4-connected, we will show that any pair of vertices is connected by four disjoint 

paths. Let {a, b} C_ V(G). By replacing the edges el and e2 on any a - b path, by 

the paths P~ and P2 respectively, any pair of disjoint a -  b paths will be 

transformed into disjoint paths. Since G is 4-connected, it contains four disjoint 

a - b paths and therefore so does H. If {a, b} C V(G'\{g}), let Oi, 02, 03, 04 be 

four disjoint a - b paths in G'.  If g ~  Q~ then Q~ E H. If g E Q1, then we must 

have QI = ( a , . . . ,  g ,  g, gj,." ", b). Since G \{et, e2} is connected, it contains an 

x , - x i  path ( x , . . . ,  xj). If we replace the path Qa by the path Q~ = ( a , . . . ,  g ,  

xi , ' -  ", xj, g j , . . . ,  b) the four paths Q~, Qz, Q3 and Q4 are obviously four disjoint 

a - b paths in H. If a E G'\{g} and b E G, let 

P, =(a , . . . ,g , ,g) ,  i = 1,2,3,4 

be four disjoint a - g paths in G'.  If b # x ,  by a variant of Menger's theorem, G 

contains four disjoint b - {xa, x2, x3, x4} paths Q~ = (b , . . . ,  x~). It is easily seen 

that none of these paths contains the edge el or e2. The paths 

P~ =(a , . . . , g , , x , , . . . , b ) ,  i = 1 , 2 , 3 , 4  

obviously constitute four disjoint a -  b paths in H. Finally, if b = xl, let 

Q~ = (x~, �9 ' ", xj), j = 2, 3, 4 be three disjoint xl - {x2, x3, x4} paths in G \{el}. Such 

paths exist since G \{e~} is at least three connected. Again, none of these paths 

contains e2. The four paths 

f f j=(a , . . . ,g j ,  xi,. . ' ,x~), ] = 2 , 3 , 4 ;  P,=(a,...,gl, x,) 

are four disjoint a -  b paths in H. We say that H is obtained from G by 

replacing {et, e2} by G'.  
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THEOREM 2. Let G be a 3-connected cubic graph. Let F C_ E ( G ) be a 1-factor 
of G and let F~ C_ F be a set of edges such that no Hamiltonian cycle of G contains 
F~. Let G be obtained from G as in Theorem 1. Let ~ be obtained from G by 
replacing each pair of edges of G, derived from doubling the edges of F~, by an 
arbitrary 4-regular 4-connected graph. (See Fig. 3.) Then ~ is a 4-regular, 
4-connected non-Hamiltonian graph. 

G G ~ f3 ~ f 4  

Fig. 3. 

PROOF. If a cycle C in ~ covers all vertices of H,\{h}, and contains both 

edges {eI, e~} (Fig. 3), then since/-/1E ~4, C n {fl,f2} = O. It follows that either 
{e'~', eg} C_ C, or {e~', e'~} n C = 0 .  Therefore, C cannot be a Hamiltonian cycle in 
0. Again, since Hi E ~4, any Hamiltonian cycle of ~ would have to intersect 
Hi \{h} and G in a path. But then the contractions of these paths to a single 

vertex, and replacing the adjacent edges e',, e7 by the edge e in G, yields a 
Hamiltonian cycle in G that contains F1. This contradicts the choice of F~ and 
the theorem is proved. 

We denote by M, the family of all 4-regular, 4-connected graphs obtained as in 

Theorem 2. Obviously, M~ C J / (F1 = ~). Figure 4 is a member of M, with only 
54 vertices. It is obtained by choosing G to be the triangular prism, and replacing 

the three pairs of edges (the "vertical" 1-factor) by copies of/(5. 

In spite of the large number of graphs in M, no member of M is 4-polytopal. 

To show that, we first obtain two types of forbidden subgraphs in a simple 

4-polytopal graph. It is worthwhile mentioning that by Steinitz's theorem (and 

Kuratowski's characterization of planar graphs) a 3-connected cubic graph is 
3-polytopal iff it does not contain a homomorphic image of K3.3. Theorems 3 and 

4 show that no such finite family of forbidden subgraphs exists for simple 

4-polytopes. 
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Fig. 4. 

THEOREM 3. I f  G is a 4-connected 4-regular graph, containing K3.4 as a 

subgraph, then G is not polytopal. 

PROOF. Since G is 4-connected, it is easy to see that K~.4 must be an induced 

subgraph. Obviously, G is not 3-polytopal. Consider the edge (b4, c4) in Fig. 5. 

By (1) and (2), (b4, c4) is contained in exactly 3 "facets" of G, F1, F2, F3. Since F~ 

are cubic, b4 must have at least two of the three vertices {at, a2, a3} as neighbors 

in each Fi. Since F~ N F2 fq F3 = (b4, c4) (the intersection is 1-dimensional) it is 

easy to see that no F, can contain all three vertices {al, a2, a3}. Let F4 be the 

fourth "facet" containing b4. Since c4 ff F4, {at, a2, a3} C F4. Applying the above 
argument to any of the edges (al, b,), i --- 1,2,3, shows that F4 can contain none 

of these edges. But then F4 C_ K3.4, and since F4 is a cubic graph, and since the 

only cubic subgraph of K3,4 is a K3,3, F4 cannot be planar. 

t3 I 0 0 

t 'b 4 

C 4 

Fig. 5. 
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COROLLARY. The Meredith graph is not 4-polytopal, neither is any 4-regular 

4-connected graph in At in which K3,4 is used for a substitution. 

THEOREM 4. Let G be a 4-connected 4-regular graph containing a subgraph 

as described in Fig. 6. (We assume that {e~, e2, f i ,  f2} and {el, e2, f3, f4} are the only 

edges incident with G1 and G2, respectively, and fl, f2, f3, f4 are 4-distinct edges.) 
Then G is not 4-polytopal. 

e 2 

Fig. 6. 

PROOF. If {el, e2} are not contained in the same "facet", then the three 

"facets" containing el will have to contain the edges {e,,f~,f2} which is 

impossible. Hence we may assume that G has a "facet" F _D {el, e2}. F is a cubic, 

3-connected subgraph of G, hence F N {fl,f2}~ Q. el is the intersection of 
exactly 3 "facets". Hence we have a "facet" F '  such that el ~ F ' ,  but e2 ~ F',  so 

we must have F '  D {fl, f2}. Since F '  tq F is a cycle containing et, we cannot have 

{fl, f2} C_ F. Without loss of generality, we may assume that f~ ~ F. Applying the 
same argument to the face F and the subgraph G2, we obtain that f3 E F but 

f 4 ~ F .  Since f3~f l ,  the set {f~,f3} is an edge cut set of F ;  this contradicts the 
3-connectivity of F. 

COROLLARY. NO graph in At is 4-polytopal. 

REMARKS. In spite Of the fact that the extensive family of 4-connected 

4-regular non-Hamiltonian graphs At fails to even "look like" 4-polytopal 

graphs, the author still believes (though with less certainty) that Barnette 's 

conjecture is false. We definitely need new constructions of non-Hamiltonian, 

4-regular, 4-connected graphs to justify that. 
From a "graphical" point of view, the family At can be generalized to yield 

2r-regular, 2r-connected non-Hamiltonian graphs. These graphs yield new 

upper bounds on the cyclability of k-regular, k-connected graphs. For example, 
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the g raph  in Fig. 4 has 21 ver t ices  that  a re  not  con t a ined  in a cycle. F o r  more  

detai ls  on this sub jec t ,  see  W.  D. Mccua ig  and  M. Rosen fe ld  [5]. 
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